Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Heliyon ; 10(6): e27849, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524553

RESUMO

Objective: To assess whether 48-h negative blood culture (BC) bottles are still negative at the classic 120-h incubation endpoint and whether 48 h might be the time to make antimicrobial therapy decisions. Methods: Data from the first collected bottles from bloodstream infection (BSI) episodes of single patients were retrospectively analyzed. Probabilities of bottles being negative at the classic endpoint were calculated from 0 to 120 h of incubation. Results: Among BC-negative episodes (4018/4901 [82.0%]), most (2097/4018 (52.2%) occurred in medicine patients. At 48 h, probability was 100.0% (95% CI, 99.9-100.0) for all 4018 patients. Of these, 1244 (31.0%) patients remained on antibiotics until 120 h. Excluding 401 (32.2%) patients who received antibiotics for another (non-bloodstream) infection, 843 (67.8%) of 1244 patients could have merited early (48-h) discontinuation of antibiotics. Stopping treatment in these patients would have led to saving 5201 days of access (943 [18.1%] days), watch (3624 [69.7%] days), or reserve (634 [12.2%]) AWaRe groups' antibiotics, which correspond to 65.6% (5201/7928) of days of administered antibiotics in all 1244 patients. Conclusion: As an early indicator of BC negativity, the 48-h endpoint could reliably support antimicrobial stewardship, but the clinical judgment remains imperative especially when BSI is highly suspected.

2.
Microbiol Spectr ; 12(4): e0357423, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38466118

RESUMO

Few data are available on the lung microbiota composition of patients with coronavirus disease 2019-related acute respiratory distress syndrome (C-ARDS) receiving invasive mechanical ventilation (IMV). Moreover, it has never been investigated whether there is a potential correlation between lung microbiota communities and respiratory mechanics. We performed a prospective observational study in two intensive care units of a university hospital in Italy. Lung microbiota was investigated by bacterial 16S rRNA gene sequencing, performed on bronchoalveolar lavage fluid samples withdrawn after intubation. The lung bacterial communities were analyzed after stratification by respiratory system compliance/predicted body weight (Crs) and ventilatory ratio (VR). Weaning from IMV and hospital survival were assessed as secondary outcomes. In 70 C-ARDS patients requiring IMV from 1 April through 31 December 2020, the lung microbiota composition (phylum taxonomic level, permutational multivariate analysis of variance test) significantly differed between who had low Crs vs those with high Crs (P = 0.010), as well as in patients with low VR vs high VR (P = 0.012). As difference-driving taxa, Proteobacteria (P = 0.017) were more dominant and Firmicutes (P = 0.040) were less dominant in low- vs high-Crs patients. Similarly, Proteobacteria were more dominant in low- vs high-VR patients (P = 0.013). After multivariable regression analysis, we further observed lung microbiota diversity as a negative predictor of weaning from IMV and hospital survival (hazard ratio = 3.31; 95% confidence interval, 1.52-7.20, P = 0.048). C-ARDS patients with low Crs/low VR had a Proteobacteria-dominated lung microbiota. Whether patients with a more diverse lung bacterial community may have more chances to be weaned from IMV and discharged alive from the hospital warrants further large-scale investigations. IMPORTANCE: Lung microbiota characteristics were demonstrated to predict ventilator-free days and weaning from mechanical ventilation in patients with acute respiratory distress syndrome (ARDS). In this study, we observed that in severe coronavirus disease 2019 patients with ARDS who require invasive mechanical ventilation, lung microbiota characteristics were associated with respiratory mechanics. Specifically, the lung microbiota of patients with low respiratory system compliance and low ventilatory ratio was characterized by Proteobacteria dominance. Moreover, after multivariable regression analysis, we also found an association between patients' microbiota diversity and a higher possibility of being weaned from mechanical ventilation and discharged alive from the hospital. For these reasons, lung microbiota characterization may help to stratify patient characteristics and orient the delivery of target interventions. (This study has been registered at ClinicalTrials.gov on 17 February 2020 under identifier NCT04271345.).Registered at ClinicalTrials.gov, 17 February 2020 (NCT0427135).


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , COVID-19/terapia , RNA Ribossômico 16S/genética , Pulmão , Síndrome do Desconforto Respiratório/terapia , Mecânica Respiratória
3.
Diagnostics (Basel) ; 14(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38396484

RESUMO

The aim of the study was to build a machine learning-based predictive model to discriminate between hospitalized patients at low risk and high risk of bloodstream infection (BSI). A Data Mart including all patients hospitalized between January 2016 and December 2019 with suspected BSI was built. Multivariate logistic regression was applied to develop a clinically interpretable machine learning predictive model. The model was trained on 2016-2018 data and tested on 2019 data. A feature selection based on a univariate logistic regression first selected candidate predictors of BSI. A multivariate logistic regression with stepwise feature selection in five-fold cross-validation was applied to express the risk of BSI. A total of 5660 hospitalizations (4026 and 1634 in the training and the validation subsets, respectively) were included. Eleven predictors of BSI were identified. The performance of the model in terms of AUROC was 0.74. Based on the interquartile predicted risk score, 508 (31.1%) patients were defined as being at low risk, 776 (47.5%) at medium risk, and 350 (21.4%) at high risk of BSI. Of them, 14.2% (72/508), 30.8% (239/776), and 64% (224/350) had a BSI, respectively. The performance of the predictive model of BSI is promising. Computational infrastructure and machine learning models can help clinicians identify people at low risk for BSI, ultimately supporting an antibiotic stewardship approach.

4.
Sci Rep ; 14(1): 3344, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336904

RESUMO

Endoscopic Retrograde Cholangio-Pancreatography (ERCP) with biliary stenting is a minimally invasive medical procedure employed to address both malignant and benign obstructions within the biliary tract. Benign biliary strictures (BBSs), typically arising from surgical interventions such as liver transplants and cholecystectomy, as well as chronic inflammatory conditions, present a common clinical challenge. The current gold standard for treating BBSs involves the periodic insertion of plastic stents at intervals of 3-4 months, spanning a course of approximately one year. Unfortunately, stent occlusion emerges as a prevalent issue within this treatment paradigm, leading to the recurrence of symptoms and necessitating repeated ERCPs. In response to this clinical concern, we initiated a pilot study, delving into the microbial composition present in bile and on the inner surfaces of plastic stents. This investigation encompassed 22 patients afflicted by BBSs who had previously undergone ERCP with plastic stent placement. Our preliminary findings offered promising insights into the microbial culprits behind stent occlusion, with Enterobacter and Lactobacillus spp. standing out as prominent bacterial species known for their biofilm-forming tendencies on stent surfaces. These revelations hold promise for potential interventions, including targeted antimicrobial therapies aimed at curtailing bacterial growth on stents and the development of advanced stent materials boasting anti-biofilm properties.


Assuntos
Sistema Biliar , Colestase , Humanos , Bile , Projetos Piloto , Resultado do Tratamento , Colestase/cirurgia , Colangiopancreatografia Retrógrada Endoscópica/métodos , Stents , Estudos Retrospectivos
5.
Microbiol Spectr ; 12(4): e0330523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38411998

RESUMO

Bloodstream infection (BSI) caused by carbapenem-resistant Klebsiella pneumoniae (KP) poses significant challenges, particularly when the infecting isolate carries multiple antimicrobial resistance (AMR) genes/determinants. This study, employing short- and long-read whole-genome sequencing, characterizes six New Delhi metallo-ß-lactamase (NDM) 1 and KP carbapenemase (KPC) 3 co-producing KP isolates, the largest cohort investigated in Europe to date. Five [sequence type (ST) 512] and one (ST11) isolates were recovered from patients who developed BSI from February to August 2022 or February 2023 at two different hospitals in Rome, Italy. Phylogenetic analysis revealed two distinct clusters among ST512 isolates and a separate cluster for the ST11 isolate. Beyond blaNDM-1 and blaKPC-3, various AMR genes, indicative of a multidrug resistance phenotype, including colistin resistance, were found. Each cluster-representative ST512 isolate harbored a blaNDM-1 plasmid (IncC) and a blaKPC-3 plasmid [IncFIB(pQil)/IncFII(K)], while the ST11 isolate harbored a blaNDM-1 plasmid [IncFII(pKPX1)] and a blaKPC-3 plasmid [IncFIB(K)/IncFII(K)]. The blaNDM-1 plasmids carried genes conferring resistance to clinically relevant antimicrobial agents, and the aminoglycoside resistance gene aac(6')-Ib was found on different plasmids. Colistin resistance-associated mgrB/pmrB gene mutations were present in all isolates, and the yersiniabactin-encoding ybt gene was unique to the ST11 isolate. In conclusion, our findings provide insights into the genomic context of blaNDM-1/blaKPC-3 carbapenemase-producing KP isolates.IMPORTANCEThis study underscores the critical role of genomic surveillance as a proactive measure to restrict the spread of carbapenemase-producing KP isolates, especially when key antimicrobial resistance genes, such as blaNDM-1/blaKPC-3, are plasmid borne. In-depth characterization of these isolates may help identify plasmid similarities contributing to their intra-hospital/inter-hospital adaptation and transmission. Despite the lack of data on patient movements, it is possible that carbapenem-resistant isolates were selected to co-produce KP carbapenemase and New Delhi metallo-ß-lactamase via plasmid acquisition. Studies employing long-read whole-genome sequencing should be encouraged to address the emergence of KP clones with converging phenotypes of virulence and resistance to last-resort antimicrobial agents.


Assuntos
Anti-Infecciosos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae , Colistina , Filogenia , Infecções por Klebsiella/epidemiologia , Tipagem de Sequências Multilocus , beta-Lactamases/genética , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Carbapenêmicos , Plasmídeos/genética , Itália , Hospitais , Testes de Sensibilidade Microbiana
6.
mBio ; 15(1): e0276923, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38088540

RESUMO

IMPORTANCE: Candidemia (bloodstream invasion by Candida species) is a major fungal disease in humans. Despite the recent progress in diagnosis and treatment, therapeutic options are limited and under threat of antimicrobial resistance. The disease mortality remains high (around 40%). In contrast with deep-seated invasive candidiasis, particularly that occurring in patients with hematologic malignancies and organ transplants, patients with candidemia are often not immunocompromised and therefore able to mount memory anticandidal immune responses, perhaps primed by Candida commensalism. We investigated antibody immunity in candidemia patients and report here on the ability of these patients to produce antibodies that react with Candida antigens. In particular, the patients with high titers of IgG reactive with two immunodominant, virulence-associated antigens (Als3 and MP65) had a higher 30-day survival. If confirmed by controlled, prospective clinical studies, our data could inform the development of antibody therapy to better treat a severe fungal infection such as candidiasis.


Assuntos
Candidemia , Candidíase Invasiva , Humanos , Candida , Candidemia/diagnóstico , Candidemia/tratamento farmacológico , Estudos Prospectivos , Candidíase Invasiva/tratamento farmacológico , Antígenos de Fungos , Anticorpos/uso terapêutico , Antifúngicos/uso terapêutico
7.
Microorganisms ; 11(10)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37894171

RESUMO

The ongoing epidemic of mpox, namely human monkeypox virus (MPXV) infection, requires rapid and reliable laboratory diagnosis. We report on the QIAstat-Dx viral vesicular panel PCR assay that allows the detection of (within 75 min) six vesicular disease-causing viruses, including MPXV. We analyzed 168 clinical samples, known to be positive (51 samples) or negative (117 samples) for MPXV clade II, obtained from patients at their mpox diagnosis or follow-up. QIAstat assay results were compared to those of a MPXV-specific reference PCR assay. The QIAstat assay detected MPXV (clade II) in 51 (100%) of 51 samples and did not detect MPXV in 117 (100%) of 117 samples, resulting in a positive or negative agreement of 100% (95% CI, 93.0-100) and 100% (95% CI, 96.8-100), respectively. Of the 20 patients diagnosed with mpox, 18 (90.0%) had at least a vesicular swab and 1 (5.0%) had only an oropharyngeal swab positive for MPXV. At mpox follow-ups, 2 (10.0%) of 20 patients had first-time positive whole blood samples. Thirteen MPXV-negative samples were positive for mpox-mimicking viruses. Our findings show the excellent performance of the QIAstat-Dx assay for MPXV detection in clinical samples. Further studies are needed before considering a large-scale application of the QIAstat-Dx assay.

8.
Microbiol Spectr ; : e0238823, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695061

RESUMO

The Fourier-transform infrared spectroscopy-based IR Biotyper is a straightforward typing tool for bacterial species, but its use with Candida species is limited. We applied IR Biotyper to Candida parapsilosis, a common cause of nosocomial bloodstream infection (BSI), which is aggravated by the intra-hospital spread of fluconazole-resistant isolates. Of 59 C. parapsilosis isolates studied, n = 56 (48 fluconazole-resistant and 8 fluconazole-susceptible) and n = 3 (2 fluconazole-resistant and 1 fluconazole-susceptible) isolates, respectively, had been recovered from BSI episodes in 2 spatially distant Italian hospitals. The latter isolates served as an outgroup. Of fluconazole-resistant isolates, n = 40 (including one outgroup) harbored the Y132F mutation alone and n = 10 (including one outgroup) harbored both Y132F and R398I mutations in the ERG11-encoded azole-target enzyme. Using a microsatellite typing method, which relies on the amplification of genomic short tandem repeats (STR), two major clusters were obtained based on the mutation(s) (Y132F or Y132F/R398I) present in the isolates. Regarding IR Biotyper, each isolate was analyzed in quintuplicate using an automatic (i.e., proposed by the manufacturer's software) or tentative (i.e., proposed by us) cutoff value. In the first case, four clusters were identified, with clusters I and II formed by Y132F or Y132F/R398I isolates, respectively. In the second case, six subclusters (derived by the split of clusters I and II) were identified. This allowed to separate the outgroup isolates from other isolates and to increase the IR Biotyper typeability. The agreement of IR Biotyper with STR ranged from 47% to 74%, depending on type of cutoff value used in the analysis. IMPORTANCE Establishing relatedness between clinical isolates of Candida parapsilosis is important for implementing rapid measures to control and prevent nosocomial transmission of this Candida species. We evaluated the FTIR-based IR Biotyper, a new typing method in the Candida field, using a collection of fluconazole-resistant C. parapsilosis isolates supposed to be genetically related due to the presence of the Y132F mutation. We showed that IR Biotyper was discriminatory but not as much as the STR method, which is still considered the method of choice. Further studies on larger series of C. parapsilosis isolates or closely related Candida species will be necessary to confirm and/or extend the results from this study.

9.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-37259419

RESUMO

Candida parapsilosis is the major non-C. albicans species involved in the colonization of central venous catheters, causing bloodstream infections. Biofilm formation on medical devices is considered one of the main causes of healthcare-associated infections and represents a global public health problem. In this context, the development of new nanomaterials that exhibit anti-adhesive and anti-biofilm properties for the coating of medical devices is crucial. In this work, we aimed to characterize the antimicrobial activity of two different coated-surfaces, graphene oxide (GO) and curcumin-graphene oxide (GO/CU) for the first time, against C. parapsilosis. We report the capacity of GO to bind and stabilize CU molecules, realizing a homogenous coated surface. We tested the anti-planktonic activity of GO and GO/CU by growth curve analysis and quantification of Reactive Oxigen Species( ROS) production. Then, we tested the antibiofilm activity by adhesion assay, crystal violet assay, and live and dead assay; moreover, the inhibition of the formation of a mature biofilm was investigated by a viability test and the use of specific dyes for the visualization of the cells and the extra-polymeric substances. Our data report that GO/CU has anti-planktonic, anti-adhesive, and anti-biofilm properties, showing a 72% cell viability reduction and a decrease of 85% in the secretion of extra-cellular substances (EPS) after 72 h of incubation. In conclusion, we show that the GO/CU conjugate is a promising material for the development of medical devices that are refractory to microbial colonization, thus leading to a decrease in the impact of biofilm-related infections.

10.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175968

RESUMO

The human bladder has been long thought to be sterile until that, only in the last decade, advances in molecular biology have shown that the human urinary tract is populated with microorganisms. The relationship between the urobiota and the development of urinary tract disorders is now of great interest. Patients with spina bifida (SB) can be born with (or develop over time) neurological deficits due to damaged nerves that originate in the lower part of the spinal cord, including the neurogenic bladder. This condition represents a predisposing factor for urinary tract infections so that the most frequently used approach to treat patients with neurogenic bladder is based on clean intermittent catheterization (CIC). In this study, we analyzed the urobiota composition in a pediatric cohort of patients with SB compared to healthy controls, as well as the urobiota characteristics based on whether patients received CIC or not.


Assuntos
Cateterismo Uretral Intermitente , Disrafismo Espinal , Bexiga Urinaria Neurogênica , Infecções Urinárias , Sistema Urinário , Humanos , Criança , Bexiga Urinaria Neurogênica/complicações , Bexiga Urinaria Neurogênica/terapia , Disrafismo Espinal/complicações , Infecções Urinárias/complicações
11.
Infection ; 51(4): 1061-1069, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36867310

RESUMO

PURPOSE: SARS-COV-2 pandemic led to antibiotic overprescription and unprecedented stress on healthcare systems worldwide. Knowing the comparative incident risk of bloodstream infection due to multidrug-resistant pathogens in COVID ordinary wards and intensive care-units may give insights into the impact of COVID-19 on antimicrobial resistance. METHODS: Single-center observational data extracted from a computerized dataset were used to identify all patients who underwent blood cultures from January 1, 2018 to May 15, 2021. Pathogen-specific incidence rates were compared according to the time of admission, patient's COVID status and ward type. RESULTS: Among 14,884 patients for whom at least one blood culture was obtained, a total of 2534 were diagnosed with HA-BSI. Compared to both pre-pandemic and COVID-negative wards, HA-BSI due to S. aureus and Acinetobacter spp. (respectively 0.3 [95% CI 0.21-0.32] and 0.11 [0.08-0.16] new infections per 100 patient-days) showed significantly higher incidence rates, peaking in the COVID-ICU setting. Conversely, E. coli incident risk was 48% lower in COVID-positive vs COVID-negative settings (IRR 0.53 [0.34-0.77]). Among COVID + patients, 48% (n = 38/79) of S. aureus isolates were resistant to methicillin and 40% (n = 10/25) of K. pneumoniae isolates were resistant to carbapenems. CONCLUSIONS: The data presented here indicate that the spectrum of pathogens causing BSI in ordinary wards and intensive care units varied during the pandemic, with the greatest shift experienced by COVID-ICUs. Antimicrobial resistance of selected high-priority bacteria was high in COVID positive settings.


Assuntos
Anti-Infecciosos , COVID-19 , Infecção Hospitalar , Sepse , Humanos , Incidência , Pandemias , Staphylococcus aureus , Escherichia coli , COVID-19/epidemiologia , SARS-CoV-2 , Sepse/microbiologia , Unidades de Terapia Intensiva , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
12.
Antibiotics (Basel) ; 12(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671325

RESUMO

(1) Background: Colistin-only susceptible (COS) Acinetobacter baumannii (AB) ventilator-associated pneumonia (VAP) represents a clinical challenge in the Intensive Care Unit (ICU) due to the negligible lung diffusion of this molecule and the low-grade evidence on efficacy of its nebulization. (2) Methods: We conducted a prospective observational study on 134 ICU patients with COS-AB VAP to describe the 'real life' clinical use of high-dose (5 MIU q8) aerosolized colistin, using a vibrating mesh nebulizer. Lung pharmacokinetics and microbiome features were investigated. (3) Results: Patients were enrolled during the COVID-19 pandemic with the ICU presenting a SAPS II of 42 [32-57]. At VAP diagnosis, the median PaO2/FiO2 was 120 [100-164], 40.3% were in septic shock, and 24.6% had secondary bacteremia. The twenty-eight day mortality was 50.7% with 60.4% and 40.3% rates of clinical cure and microbiological eradication, respectively. We did not observe any drug-related adverse events. Epithelial lining fluid colistin concentrations were far above the CRAB minimal-inhibitory concentration and the duration of nebulized therapy was an independent predictor of microbiological eradication (12 [9.75-14] vs. 7 [4-13] days, OR (95% CI): 1.069 (1.003-1.138), p = 0.039). (4) Conclusions: High-dose and prolonged colistin nebulization, using a vibrating mesh, was a safe adjunctive therapeutic strategy for COS-AB VAP. Its right place and efficacy in this setting warrant investigation in interventional studies.

13.
Microbiol Spectr ; : e0410422, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36715537

RESUMO

Candida auris and other Candida species (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei) are important causes of bloodstream infection. Early or prolonged treatment with antifungal agents is often required. The inhibitory effect of antifungal agents in the patients' bloodstream may compromise the sensitivity of blood culture (BC) to diagnose and/or monitor patients with candidemia. Using a clinical BC simulation model, we compared antimicrobial drug-neutralizing BC media in BacT/Alert FA PLUS (FAP) or Bactec Plus Aerobic/F (PAF) bottles with non-neutralizing BC media in Bactec Mycosis IC/F (MICF) bottles to allow Candida growth in the presence of 100%, 50%, or 25% peak serum level (PSL) antifungal concentrations. In total, 117 organism/antifungal combinations were studied, and Candida growth was detected after incubating bottles into BacT/Alert VIRTUO or Bactec FX BC systems. Compared to control (without antifungal) bottles, both FAP and PAF bottles with 100% PSL antifungal concentrations allowed 100% recovery for C. auris, C. glabrata, and C. parapsilosis, whereas recovery was below 100% for C. albicans, C. krusei, and C. tropicalis. MICF bottles were less efficient at 100%, 50%, or 25% PSL antifungal concentrations, for all Candida species, except for C. auris. While azoles and amphotericin B did not hinder Candida growth in FAP or PAF bottles, echinocandins allowed C. auris, C. glabrata, and C. parapsilosis to grow in FAP, PAF, or MICF bottles. Overall, the maximum time to detection was 4.6 days. Taken together, our findings emphasize the reliability of BCs in patients undergoing antifungal treatment for candidemia. IMPORTANCE While echinocandins remain the preferred antifungal therapy for candidemia, bloodstream infections caused by C. auris, C. glabrata, or, at a lesser extent, C. parapsilosis may be difficult to treat with these antifungal agents. This is in view of the high propensity of the above-mentioned species to develop antifungal resistance or tolerance during treatment. Azoles and amphotericin B are possible alternatives. Thus, optimizing the recovery of Candida from BCs is important to exclude the likelihood of negative BCs for Candida species, owing to the inhibitory effect of antifungal agents present in the blood sample with which BCs are inoculated. Consistently, our results about the recovery of medically important Candida species (including C. auris) from simulated BCs in BacT/Alert FAP, Bactec PAF, or Bactec MICF bottles containing clinically relevant antifungal concentrations add support to this research topic, as well as to the use of BCs for monitoring the clinical and therapeutic course of candidemia.

14.
Microorganisms ; 12(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38257908

RESUMO

The diagnosis of Candida bloodstream infection (BSI) may rely on a PCR-based analysis of a positive blood culture (PBC) obtained from the patient at the time of BSI. In this study, a yeast DNA extraction protocol for use on PBCs was developed and evaluated with the molecular mouse (MM) yeast blood (YBL) chip-based PCR assay, which allowed us to detect nine medically relevant Candida species. We studied 125 simulated or clinical PBCs for Candida species. A positive correlation between the DNA concentration and colony-forming unit count was found for simulated (Spearman's ρ = 0.58; p < 0.0001) and clinical (Spearman's ρ = 0.23, p = 0.09) PBCs. The extracted DNA yielded positive results with the MM YBL chip assay that agreed with the Candida species-level identification results for 63 (100%) of 63 isolates from simulated PBCs and 66 (99.5%) of 67 isolates from clinical PBCs. The false-negative result was for one C. tropicalis isolate that grew together with C. albicans in PBC. None of the 30 (Candida)-negative clinical BCs included as negative controls yielded a positive result with the MM YBL chip assay. Our DNA extraction protocol for the Candida species couples efficiency and simplicity together. Nevertheless, further studies are needed before it can be adopted for use with the MM YBL chip assay.

15.
Microbiol Spectr ; 10(6): e0292222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409091

RESUMO

In keeping with the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the COVID-19 causative agent, PCR assays have been developed to rapidly detect SARS-CoV-2 variants, which have emerged since the first (Alpha) variant was identified. Based on specific assortment of SARS-CoV-2 spike-protein mutations (ΔH69/V70, E484K, N501Y, W152C, L452R, K417N, and K417T) among the major variants known to date, Seegene Allplex SARS-CoV-2 Variants I and Variants II assays have been available since a few months before the last (Omicron) variant became predominant. Using S gene next-generation sequencing (NGS) as the SARS-CoV-2 variant identification reference method, we assessed the results of SARS-CoV-2-positive nasopharyngeal swab samples from two testing periods, before (n = 288, using only Variants I) and after (n = 77, using both Variants I and Variants II) the appearance of Omicron. The Variants I assay allowed correct identification for Alpha (37/37), Beta/Gamma (28/30), or Delta (220/221) variant-positive samples. The combination of the Variants I and Variants II assays allowed correct identification for 61/77 Omicron variant-positive samples. While 16 samples had the K417N mutation undetected with the Variants II assay, 74/77 samples had both ΔH69/V70 and N501Y mutations detected with the Variants I assay. If considering only the results by the Variants I assay, 6 (2 Beta variant positive, 1 Delta variant positive, and 3 Omicron variant positive) of 365 samples tested in total provided incorrect identification. We showed that the Variants I assay alone might be more suitable than both the Variants I and Variants II assays to identify currently circulating SARS-CoV-2 variants. Inclusion of additional variant-specific mutations should be expected in the development of future assays. IMPORTANCE Omicron variants of SARS-CoV-2 pose more important public health concerns than the previously circulating Alpha or Delta variants, particularly regarding the efficacy of anti-SARS-CoV-2 vaccines and therapeutics. Precise identification of these variants highly requires performant PCR-based assays that allow us to reduce the reliance on NGS-based assays, which remain the reference method in this topic. While the current epidemiological SARS-CoV-2 pandemic context suggests that PCR assays such as the Seegene Variants II may be dispensable, we took advantage of NGS data obtained in this study to show that the array of SARS-CoV-2 spike protein mutations in the Seegene Variants II assay may be suboptimal. This reinforces the concept that initially developed PCR assays for SARS-CoV-2 variant detection could be no longer helpful if the SARS-CoV-2 pandemic evolves to newly emerging variants.


Assuntos
COVID-19 , Laboratórios Hospitalares , Humanos , COVID-19/diagnóstico , Mutação , Reação em Cadeia da Polimerase , SARS-CoV-2/genética , Itália , Teste para COVID-19
16.
Microbiol Spectr ; 10(5): e0236822, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154273

RESUMO

Respiratory tract infection (RTI) is a common cause of visits to the hospital emergency department. During the ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), nonpharmaceutical intervention has influenced the rates of circulating respiratory viruses. In this study, we sought to detect RTI etiological agents other than SARS-CoV-2 in emergency department patients from 13 countries in Europe, the Middle East, and Africa from December 2020 to March 2021. We sought to measure the impact of patient characteristics and national-level behavioral restrictions on the positivity rate for RTI agents. Using the BioFire Respiratory Panel 2.0 Plus, 1,334 nasopharyngeal swabs from patients with RTI symptoms who were negative for SARS-CoV-2 were tested. The rate of positivity for viral or bacterial targets was 36.3%. Regarding viral targets, human rhinovirus or enterovirus was the most prevalent (56.5%), followed by human coronaviruses (11.0%) and adenoviruses (9.9%). Interestingly, age stratification showed that the positivity rate was significantly higher in the children's group than in the adults' group (68.8% versus 28.2%). In particular, human rhinovirus or enterovirus, the respiratory syncytial virus, and other viruses, such as the human metapneumovirus, were more frequently detected in children than in adults. A logistic regression model was also used to determine an association between the rate of positivity for viral agents with each country's behavioral restrictions or with patients' age and sex. Despite the impact of behavioral restrictions, various RTI pathogens were actively circulating, particularly in children, across the 13 countries. IMPORTANCE As SARS-CoV-2 has dominated the diagnostic strategies for RTIs during the current COVID-19 pandemic situation, our data provide evidence that a variety of RTI pathogens may be circulating in each of the 13 countries included in the study. It is now plausible that the COVID-19 pandemic will one day move forward to endemicity. Our study illustrates the potential utility of detecting respiratory pathogens other than SARS-CoV-2 in patients who are admitted to the emergency department for RTI symptoms. Knowing if a symptomatic patient is solely infected by an RTI pathogen or coinfected with SARS-CoV-2 may drive timely and appropriate clinical decision-making, especially in the emergency department setting.


Assuntos
COVID-19 , Infecções Respiratórias , Adulto , Criança , Humanos , Pandemias , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2/genética , Reação em Cadeia da Polimerase Multiplex , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia , Serviço Hospitalar de Emergência
17.
Front Pediatr ; 10: 909962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935374

RESUMO

The newborn's microbiota composition at birth seems to be influenced by maternal microbiota. Maternal vaginal microbiota can be a determining factor of spontaneous Preterm Birth (SPPTB), the leading cause of perinatal mortality. The aim of the study is to investigate the likelihood of a causal relationship between the maternal vaginal microbiota composition and neonatal lung and intestinal microbiota profile at birth, in cases of SPPTB. The association between the lung and/or meconium microbiota with the subsequent development of bronchopulmonary dysplasia (BPD) was also investigated. Maternal vaginal swabs, newborns' bronchoalveolar lavage fluid (BALF) (1st, 3rd, 7th day of life) and first meconium samples were collected from 20 women and 23 preterm newborns with gestational age ≤ 30 weeks (12 = SPPTB; 11 = Medically Indicated Preterm Birth-MIPTB). All the samples were analyzed for culture examination and for microbiota profiling using metagenomic analysis based on the Next Generation Sequencing (NGS) technique of the bacterial 16S rRNA gene amplicons. No significant differences in alpha e beta diversity were found between the neonatal BALF samples of SPPTB group and the MIPTB group. The vaginal microbiota of mothers with SPPTB showed a significant difference in alpha diversity with a decrease in Lactobacillus and an increase in Proteobacteria abundance. No association was found between BALF and meconium microbiota with the development of BPD. Vaginal colonization by Ureaplasma bacteria was associated with increased risk of both SPPTB and newborns' BPD occurrence. In conclusion, an increase in α-diversity values and a consequent fall in Lactobacillus in vaginal environment could be associated to a higher risk of SPPTB. We could identify neither a specific neonatal lung or meconium microbiota profiles in preterm infants born by SPPTB nor a microbiota at birth suggestive of subsequent BPD development. Although a strict match has not been revealed between microbiota of SPPTB mother-infant couples, a relationship cannot be excluded. To figure out the reciprocal influence of the maternal-neonatal microbiota and its potential role in the pathogenesis of SPPTB and BPD further research is needed.

18.
Antibiotics (Basel) ; 11(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36009892

RESUMO

This study aimed to assess the comparability of in vitro susceptibility testing methods to ceftazidime-avibactam (CZA) and ceftolozane-tazobactam (C/T). Meropenem-resistant and/or carbapenemase-producing clinical isolates of Enterobacterales (Enterobacteriaceae) and Pseudomonas aeruginosa were tested by both bioMérieux ETEST and VITEK-2 AST-N397 card and compared with a Micronaut AST-system broth microdilution (BMD) method. CZA and C/T MICs were interpreted using EUCAST breakpoints. Of the 153 Enterobacteriaceae isolates, 55.6% and 0.0% (VITEK 2) and 56.9% and 0.0% (ETEST and BMD) were susceptible to CZA and C/T, respectively. Of 52 P. aeruginosa isolates, 50.0% and 40.4% (VITEK 2, ETEST, and BMD) were susceptible to CZA and C/T, respectively. The essential agreement (EA) was 96.1% (197/205; VITEK 2 versus BMD) and 95.6% (196/205; ETEST versus BMD) for CZA testing, whereas EA was 98.0% (201/205; VITEK 2 versus BMD) and 96.6% (198/205; ETEST versus BMD) for C/T testing. The categorical agreement (CA) was 98.0% (201/205; VITEK 2 versus BMD) and 100% (ETEST versus BMD) for CZA testing, whereas CA was 100% (VITEK 2 versus BMD) and 100% (ETEST versus BMD) for C/T testing. Categorical errors regarded four Enterobacteriaceae isolates. VITEK 2 and ETEST yielded equivalent CZA and C/T susceptibility testing results, compared to the BMD method, in such a clinical context.

19.
Microbiol Spectr ; 10(4): e0099022, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35863025

RESUMO

The Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the last variant of concern (VOC) identified to date. Compared to whole-genome or gene-specific sequencing methods, reverse-transcription PCR assays may be a simpler approach to study VOCs. We used a point-of-care COVID-19 diagnostic PCR assay to detect the Omicron SARS-CoV-2 variant in the respiratory tract samples of COVID-19 patients who had tested positive for SARS-CoV-2 RNA between April 2021 and January 2022. Sequencing analyses had shown that 87 samples were positive for the Omicron variant and 43 samples were positive for a non-Omicron variant (Delta, 18 samples; Alpha, 13 samples; Gamma, 10 samples; Beta, 1 sample; or Epsilon, 1 sample). According to results by the PCR assay, whose primers anneal a nucleocapsid (N) gene region that comprises the E31/R32/S33 deletion (also termed the del31/33 mutation), we found that N gene target failure/dropout (i.e., a negative/low result) occurred in 86 (98.8%) of 87 Omicron variant-positive samples tested. These results were assessed in relation to those of the spike (S) gene, which expectedly, was detected in all (100%) 130 samples. A total of 43 (100%) of 43 Delta, Alpha, Gamma, Beta, or Epsilon variant-positive samples had a positive result with the N gene. Importantly, in 86 of 87 Omicron variant-positive samples, the del31/33 mutation was detected together with a P13L mutation, which was, instead, detected alone in the Omicron variant-positive sample that had a positive N-gene result. IMPORTANCE Rapid detection of the Omicron SARS-CoV-2 variant in patients' respiratory tract samples may influence therapeutic choices, because this variant is known to escape from certain monoclonal antibodies. Our findings strengthen the importance of manufacturers' efforts to improve the existing COVID-19 diagnostic PCR assays and/or to develop novel variant-specific PCR assays. Furthermore, our findings show that only a small fraction of SARS-CoV-2-positive samples may require whole-genome sequencing analysis, which is still crucial to validate PCR assay results. We acknowledge that the emergence of novel variants containing mutations outside the PCR assay target region could, however, allow an assay to work as per specifications without being able to identify a SARS-CoV-2-positive sample as a variant. Future work and more experience in this topic will help to reduce the risk of misidentification of SARS-CoV-2 variants that is unavoidable when using the current PCR assays.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Mutação , Reação em Cadeia da Polimerase , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade
20.
Diagnostics (Basel) ; 12(6)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35741149

RESUMO

We used nasopharyngeal swab samples of patients with a symptomatic (n = 82) or asymptomatic (n = 20) coronavirus disease 2019 (COVID-19) diagnosis to assess the ability of antigen detection tests to infer active (potentially transmissible) or inactive (potentially non-transmissible) infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using the subgenomic RNA (sgRNA) as an active replication marker of SARS-CoV-2, 48 (76.2%), 56 (88.9%), and 63 (100%) of 63 samples with sgRNA positive results tested positive with the SD BIOSENSOR STANDARD Q COVID-19 Ag (Standard Q), the SD BIOSENSOR STANDARD F COVID-19 Ag FIA (Standard F), or the Fujirebio LUMIPULSE G SARS-CoV-2 Ag (Lumipulse) assay, respectively. Conversely, 37 (94.9%), 29 (74.4%), and 7 (17.9%) of 39 samples with sgRNA negative results tested negative with Standard Q, Standard F, or Lumipulse, respectively. Stratifying results by the number of days of symptoms before testing revealed that most antigen positive/sgRNA positive results were among samples tested at 2-7 days regardless of the assay used. Conversely, most antigen negative/sgRNA negative results were among samples tested at 16-30 days only when Standard Q or Standard F were used. In conclusion, based on our findings, a negative antigen test, especially with the Lumipulse assay, or a positive antigen test, especially with the Standard F assay, may suggest, respectively, the absence or presence of replication-competent SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...